Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^2 N.N'$)bis(3-hvdroxybenzoato- $\kappa^2 O.O'$)lead(II)-2,9-dimethyl-1,10-phenanthroline–water (1/1/3)

Pei-Zheng Zhao* and Xiao-Peng Xuan

College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China Correspondence e-mail: pz_zhao@hotmail.com

Received 29 October 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.006 Å; R factor = 0.020; wR factor = 0.047; data-to-parameter ratio = 14.3.

In the title complex, $[Pb(C_{14}H_{12}N_2)(C_7H_5O_3)_2] \cdot C_{14}H_{12}N_2$. 3H₂O, the Pb^{II} ion is coordinated by two N atoms from one 2,9-dimethyl-1,10-phenanthroline (dmphen) ligand and four O atoms from two 3-hydroxybenzoate anions in a distorted pseudo-square-pyramidal environment, considering the dmphen molecule as an apical ligand. Molecules are linked into a three-dimensional framework through O-H...O and $O-H \cdots N$ hydrogen bonds. The crystal structure is further stabilized by π - π interactions between the dmphen rings of neighboring molecules, with a distance between the ring planes of 3.493 Å.

Related literature

For related literature, see: Shimoni-Livny et al. (1998); Xuan & Zhao (2007).

Experimental

Crystal data	
$[Pb(C_{14}H_{12}N_2)(C_7H_5O_3)_2]$ -	a = 31.662 (3) Å b = 10.8201 (10) Å
$M_r = 951.97$	b = 10.8291 (10) A c = 27.381 (4) Å
Monoclinic, C2/c	$\beta = 123.530 \ (1)^{\circ}$

V = 7825.9 (15) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	28443 measured reflections
diffractometer	7287 independent reflections
Absorption correction: multi-scan	6143 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 1997)	$R_{\rm int} = 0.022$
$T_{\min} = 0.217, \ T_{\max} = 0.334$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.020$ 511 parameters $wR(F^2) = 0.047$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^-$ S = 1.03 $\Delta \rho_{\rm min} = -0.49 \text{ e} \text{ Å}^{-3}$ 7287 reflections

Table 1

Selected bond lengths (Å).

Pb1-N1 Pb1 N2	2.493 (2)	Pb1-O2 Pb1-O4	2.637(2)
Pb1-O1	2.639 (2)	Pb1-O5	2.6296 (19)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3···O8 ⁱ	0.82	1.86	2.669 (4)	169
$O6-H6\cdots N4$	0.82	2.15	2.916 (4)	155
$O7 - H1W \cdots O1$	0.83	1.88	2.702 (3)	172
$O7-H2W \cdots O6^{ii}$	0.84	2.15	2.977 (3)	169
O8−H3W···O4 ⁱⁱⁱ	0.85	1.94	2.784 (3)	180
$O8-H4W \cdots O9^{iv}$	0.83	2.02	2.828 (4)	166

Symmetry codes: (i) x, y + 1, z; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (No. 07410051005) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2147).

References

- Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867
- Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.

 $\mu = 4.37 \text{ mm}^{-1}$

T = 291 (2) K

 $0.41 \times 0.35 \times 0.25 \text{ mm}$

Acta Cryst. (2007). E63, m3179 [doi:10.1107/S1600536807061065]

(2,9-Dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)bis(3-hydroxybenzoato- $\kappa^2 O, O'$)lead(II)-2,9-dimethyl-1,10-phenanthroline-water (1/1/3)

P.-Z. Zhao and X.-P. Xuan

Comment

The coordination chemistry of lead(II) with N and O donor ligands has been investigated in the past decade and frequently discussed, as lead is an environmental pollutant with severe toxic effects (Shimoni-Livny *et al.*, 1998; Xuan & Zhao, 2007). The title complex, (I), was recently obtained from the reaction of lead acetate, sodium *m*-hydroxybenzoate and 2,9-dimethyl-1,10-phenanthroline (dmphen) in an ethanol/water mixture (see Experimental), and its crystal structure is reported here.

Each Pb^{II} ion is six-coordinated by two N atoms from a dmphen ligand, and four O atoms from two *m*-hydroxybenzoate ligands (Fig.1). The four Pb—O bond lengths are different, Pb1—O1 = 2.639 (2), Pb1—O2 = 2.637 (2), Pb1—O4 = 2.569 (2) and Pb1—O5 = 2.6296 (19) Å, respectively. The two Pb—N bond lengths are also different, Pb1—N1 = 2.493 (2) Å and Pb1—N2= 2.477 (2) Å. The Pb^{II} ion is located in the center of the basal coordinationplane, and PbO₄N₂ unit forms a distorted pseudo square-pyramidal environment, considering the dmphen molecule as an apical ligand.

In the crystal structure, molecules are linked into a three dimensional framework by intermolecular O—H···O and O—H···N hydrogen bonds (Fig. 2 and 3). Molecules are also linked into a one dimensional network by π - π interactions between the dmphen ring systems (Fig. 4). These intermolecular interactions occur between the rings within offset face-to-face packing. The distance of neighboring molecules parallel ring planes is 3.493 Å. A three dimensional architecture is thus formed through hydrogen bonds and π - π stacking interactions (Fig. 4).

Experimental

A mixture of *m*-hydroxybenzoic acid (0.070 g, 0.5 mmol) and NaOH (0.018 g, 0.5 mmol) in distilled water (10 ml) was stirred until dissolution, and then Pb(CH₃COOH)₂·3H₂O (0.190 g, 0.5 mmol) was added. A solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C₁₄H₁₂N₂·0.5H₂O, 0.109 g, 0.5 mmol) in ethanol (10 ml) was then added. The mixture was refluxed for 4 h. The hot solution was cooled to room temperature and then filtered. Bright colorless single crystals of (I) appeared over a period of five days by slow evaporation at room temperature.

Refinement

C-bonded H atoms were placed in calculated positions, with C—H = 0.93 Å (aromatic CH) or C—H = 0.96 Å (methyl CH₃), and refined in the riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic CH and $U_{iso}(H) = 1.5U_{eq}(C)$ otherwise. Hydroxyl and water H atoms were found in a difference map and their coordinates fixed after regularization of geometry. Isotropic displacement parameters were fixed to $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title complex, (I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2. The hydrogen-bonding motifs in the crystal structure of (I). Dashed lines indicate the hydrogen bonds.

Fig. 3. The hydrogen-bonding motifs in the crystal structure of (I), including all molecules. Dashed lines indicate the hydrogen bonds.

Fig. 4. The π - π stacking and hydrogen bonds in the crystal structure of (I).

$(2,9-Dimethyl-1,10-phenanthroline-\kappa^2 N,N') bis(3-hydroxybenzoato-\kappa^2 O,O') lead (II)-2,9-dimethyl-1,10-phenanthroline-water (1/1/3)$

Crystal data

 $[Pb(C_{14}H_{12}N_2)(C_7H_5O_3)_2] \cdot C_{14}H_{12}N_2 \cdot 3H_2O$ $F_{000} = 3792$ $M_r = 951.97$ $D_{\rm x} = 1.616 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, C2/c $\lambda = 0.71073 \text{ Å}$ Hall symbol: -C 2yc Cell parameters from 6283 reflections a = 31.662 (3) Å $\theta = 2.4 - 27.0^{\circ}$ *b* = 10.8291 (10) Å $\mu = 4.37 \text{ mm}^{-1}$ c = 27.381 (4) ÅT = 291 (2) K $\beta = 123.530 (1)^{\circ}$ Block, colourless $0.41 \times 0.35 \times 0.25 \text{ mm}$ $V = 7825.9 (15) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer	7287 independent reflections
Radiation source: fine-focus sealed tube	6143 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 291(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -37 \rightarrow 38$
$T_{\min} = 0.217, \ T_{\max} = 0.334$	$k = -13 \rightarrow 13$
28443 measured reflections	<i>l</i> = −32→33

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.020$	H-atom parameters constrained
$wR(F^2) = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0222P)^2 + 6.8596P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.003$
7287 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
511 parameters	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $U_{\rm iso}*/U_{\rm eq}$ х \boldsymbol{Z} v Pb1 0.224379 (4) 0.879582 (10) 0.373487 (4) 0.04096 (4) 01 0.29906 (8) 0.7989(2) 0.47679 (9) 0.0708 (7) O2 0.26753 (9) 0.9783(2)0.47864 (9) 0.0709 (6) O3 0.38864 (13) 0.68961 (11) 0.0961 (9) 1.1174 (3) H3 0.3825 1.1750 0.6672 0.144* 04 0.14958 (7) 1.02393 (19) 0.30704 (9) 0.0565 (5) O5 0.15723 (7) 0.87141 (19) 0.25972 (8) 0.0532 (5) 06 -0.02455(8)0.8054 (3) 0.08300 (11) 0.0905 (9) H6 -0.00490.7516 0.0864 0.136* **O**7 0.36781 (9) 0.6228(2)0.49854 (11) 0.0779(7) H1W 0.3477 0.6811 0.4901 0.117* H2W 0.3970 0.6429 0.5259 0.117* 08 0.37422(9)0.3244(3)0.62932 (12) 0.0858 (8) 0.129* H3W 0.3670 0.3704 0.6488 H4W 0.5950 0.129* 0.3535 0.3454 09 0.18511 (11) 0.0677 (3) 0.48323 (13) 0.1003 (9) H5W 0.1638 0.0550 0.4478 0.150* H6W 0.2104 0.0227 0.4956 0.150* N1 0.27666 (8) 0.7787(2)0.34240 (9) 0.0445 (5) N2 0.27281 (7) 1.0306(2) 0.35509 (9) 0.0386 (5) N3 0.05922(9)0.7416(3)0.05994 (11) 0.0587(7)N4 0.02519 (8) 0.5671 (2) 0.10211 (10) 0.0507(6) C1 0.29728 (11) 0.8896 (3) 0.50406 (13) 0.0522(7) C2 0.33241 (11) 0.8923(3)0.56993 (12) 0.0506(7)C3 0.35607 (12) 0.7845 (3) 0.60090(13) 0.0601 (8) H3A 0.7099 0.072* 0.3504 0.5813 C4 0.38851 (13) 0.7905 (4) 0.0739(11) 0.66183 (15) H4 0.7190 0.089* 0.4040 0.6832 C5 0.39779 (14) 0.9014 (4) 0.69050(15) 0.0765 (12) H5 0.4190 0.9039 0.092* 0.7312 C6 1.0092 (4) 0.0689 (10) 0.37589 (13) 0.65958 (15) C7 0.34198 (11) 0.0571 (8) 1.0042(3)0.59884 (13) H7 0.069* 0.3259 1.0756 0.5778 C8 0.24701 (13) 1.2019 (3) 0.39162 (16) 0.0654 (9) 0.098* H8A 0.2132 1.2276 0.3619 H8B 0.098* 0.2658 1.2713 0.4158 H8C 0.2456 0.098* 1.1388 0.4153 C9 0.27266 (10) 1.1519(2) 0.36334(13)0.0479(7)C10 0.29607 (12) 0.0656 (9) 1.2343 (3) 0.34563 (15) H10 0.2957 0.079* 1.3185 0.3521 C11 0.31891 (13) 1.1934 (4) 0.31954 (15) 0.0699 (10) H11 0.3338 1.2490 0.3075 0.084* C12 0.32017 (11) 1.0657 (3) 0.31043 (12) 0.0557 (8) C13 0.34404 (13) 1.0145 (5) 0.28337(15)0.0770(12)H13 0.3592 1.0670 0.2705 0.092*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C14	0.34495 (13)	0.8918 (5)	0.27618 (15)	0.0797 (13)
H14	0.3603	0.8609	0.2579	0.096*
C15	0.32265 (11)	0.8086 (4)	0.29622 (13)	0.0618 (9)
C16	0.32383 (15)	0.6795 (5)	0.29173 (16)	0.0848 (13)
H16	0.3392	0.6447	0.2742	0.102*
C17	0.30295 (17)	0.6053 (4)	0.31249 (18)	0.0862 (13)
H17	0.3042	0.5201	0.3094	0.103*
C18	0.27932 (13)	0.6565 (3)	0.33871 (14)	0.0622 (9)
C19	0.25614 (17)	0.5778 (3)	0.36306 (17)	0.0871 (13)
H19A	0.2816	0.5561	0.4028	0.131*
H19B	0.2425	0.5041	0.3400	0.131*
H19C	0.2295	0.6229	0.3619	0.131*
C20	0.29834 (10)	0.8550 (3)	0.32251 (11)	0.0440 (7)
C21	0.29668 (9)	0.9861 (3)	0.32931 (11)	0.0413 (6)
C22	0.06912 (18)	0.9596 (4)	0.0499 (2)	0.1226 (19)
H22A	0.0502	0.9636	0.0678	0.184*
H22B	0.0511	1.0029	0.0132	0.184*
H22C	0.1017	0.9970	0.0754	0.184*
C23	0.07584 (13)	0.8271 (4)	0.03950 (17)	0.0797 (11)
C24	0.10013 (16)	0.7940 (6)	0.0111 (2)	0.1032 (17)
H24	0.1111	0.8552	-0.0032	0.124*
C25	0.10757 (16)	0.6739 (7)	0.00463 (19)	0.1022 (17)
H25	0.1236	0.6527	-0.0142	0.123*
C26	0.09143 (12)	0.5823 (4)	0.02599 (14)	0.0699 (10)
C27	0.09865 (15)	0.4532 (6)	0.02211 (17)	0.0940 (16)
H27	0.1147	0.4275	0.0038	0.113*
C28	0.08299 (16)	0.3691 (5)	0.04407 (19)	0.0915 (15)
H28	0.0888	0.2860	0.0414	0.110*
C29	0.05769 (12)	0.4029 (3)	0.07143 (15)	0.0629 (9)
C30	0.04061 (15)	0.3174 (4)	0.09526 (19)	0.0881 (14)
H30	0.0453	0.2334	0.0930	0.106*
C31	0.01745 (16)	0.3562 (4)	0.1214 (2)	0.0929 (15)
H31	0.0065	0.2993	0.1376	0.112*
C32	0.00986 (12)	0.4827 (4)	0.12410 (15)	0.0694 (10)
C33	-0.01798 (15)	0.5277 (5)	0.15087 (18)	0.1048 (16)
H33A	-0.0053	0.6074	0.1682	0.157*
H33B	-0.0129	0.4706	0.1805	0.157*
H33C	-0.0535	0.5338	0.1210	0.157*
C34	0.04918 (10)	0.5289 (3)	0.07621 (12)	0.0483 (7)
C35	0.06661 (10)	0.6209 (3)	0.05336 (12)	0.0523 (7)
C36	0.13066 (10)	0.9517 (2)	0.26357 (11)	0.0392 (6)
C37	0.07541 (10)	0.9626 (2)	0.21688 (11)	0.0390 (6)
C38	0.04679 (11)	1.0572 (3)	0.21906 (13)	0.0519 (7)
H38	0.0622	1.1156	0.2489	0.062*
C39	-0.00465 (12)	1.0644 (3)	0.17683 (14)	0.0596 (8)
Н39	-0.0238	1.1273	0.1786	0.071*
C40	-0.02758 (11)	0.9795 (3)	0.13249 (14)	0.0589 (8)
H40	-0.0622	0.9849	0.1044	0.071*
C41	0.00033 (11)	0.8858 (3)	0.12926 (14)	0.0573 (8)

C42	0.05214 (10)	0.8775 (3)	0.17154 (12)	0.0497 (7)
H42	0.0711	0.8148	0.1693	0.060*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb1	0.03378 (6)	0.05033 (7)	0.03576 (6)	-0.00360 (5)	0.01731 (5)	0.00157 (5)
01	0.0534 (13)	0.0931 (18)	0.0474 (13)	0.0185 (12)	0.0163 (11)	-0.0101 (12)
02	0.0758 (16)	0.0763 (16)	0.0482 (13)	0.0180 (14)	0.0264 (12)	0.0043 (12)
O3	0.105 (2)	0.125 (3)	0.0602 (16)	-0.017 (2)	0.0464 (17)	-0.0352 (16)
O4	0.0442 (11)	0.0573 (13)	0.0520 (12)	-0.0007 (10)	0.0165 (10)	-0.0189 (10)
05	0.0401 (10)	0.0676 (14)	0.0426 (11)	0.0102 (10)	0.0170 (9)	-0.0114 (10)
O6	0.0435 (13)	0.101 (2)	0.0773 (17)	0.0139 (13)	0.0020 (12)	-0.0476 (15)
07	0.0653 (15)	0.0707 (16)	0.0834 (17)	0.0128 (12)	0.0319 (14)	0.0016 (13)
08	0.0697 (16)	0.0994 (19)	0.0879 (19)	-0.0021 (15)	0.0433 (15)	-0.0342 (16)
09	0.097 (2)	0.108 (2)	0.105 (2)	0.0183 (18)	0.0613 (19)	0.0024 (18)
N1	0.0465 (13)	0.0411 (13)	0.0351 (12)	0.0026 (11)	0.0157 (11)	-0.0009 (10)
N2	0.0328 (11)	0.0392 (12)	0.0395 (12)	-0.0002 (9)	0.0173 (10)	0.0029 (10)
N3	0.0425 (14)	0.0665 (18)	0.0574 (16)	-0.0041 (13)	0.0214 (13)	0.0051 (14)
N4	0.0359 (13)	0.0639 (16)	0.0456 (14)	-0.0023 (12)	0.0182 (12)	-0.0017 (12)
C1	0.0418 (16)	0.071 (2)	0.0460 (17)	-0.0045 (16)	0.0254 (14)	-0.0047 (16)
C2	0.0410 (15)	0.075 (2)	0.0394 (15)	-0.0063 (15)	0.0244 (13)	0.0013 (15)
C3	0.059 (2)	0.076 (2)	0.0487 (18)	-0.0096 (17)	0.0317 (16)	0.0072 (16)
C4	0.062 (2)	0.105 (3)	0.054 (2)	-0.006 (2)	0.0318 (18)	0.022 (2)
C5	0.059 (2)	0.128 (4)	0.0382 (18)	-0.016 (2)	0.0243 (17)	0.002 (2)
C6	0.061 (2)	0.108 (3)	0.050 (2)	-0.013 (2)	0.0379 (18)	-0.013 (2)
C7	0.0515 (18)	0.084 (2)	0.0435 (17)	-0.0019 (17)	0.0309 (15)	-0.0026 (16)
C8	0.064 (2)	0.0451 (18)	0.083 (2)	-0.0014 (16)	0.0382 (19)	-0.0140 (17)
C9	0.0381 (15)	0.0383 (16)	0.0536 (17)	-0.0010 (12)	0.0167 (14)	0.0022 (13)
C10	0.056 (2)	0.0467 (19)	0.080 (2)	-0.0059 (15)	0.0290 (19)	0.0172 (17)
C11	0.053 (2)	0.074 (3)	0.070 (2)	-0.0105 (17)	0.0257 (18)	0.0306 (19)
C12	0.0381 (16)	0.085 (2)	0.0373 (16)	-0.0023 (15)	0.0166 (14)	0.0156 (16)
C13	0.0469 (19)	0.142 (4)	0.046 (2)	-0.004 (2)	0.0281 (17)	0.018 (2)
C14	0.049 (2)	0.151 (4)	0.0439 (19)	0.015 (2)	0.0286 (17)	-0.002 (2)
C15	0.0424 (17)	0.099 (3)	0.0357 (16)	0.0159 (17)	0.0165 (14)	-0.0070 (17)
C16	0.068 (2)	0.112 (4)	0.057 (2)	0.034 (2)	0.023 (2)	-0.024 (2)
C17	0.089 (3)	0.064 (3)	0.074 (3)	0.027 (2)	0.025 (2)	-0.015 (2)
C18	0.063 (2)	0.0459 (18)	0.0468 (18)	0.0084 (15)	0.0113 (16)	-0.0071 (14)
C19	0.113 (3)	0.0406 (18)	0.081 (3)	-0.010 (2)	0.037 (3)	0.0009 (18)
C20	0.0314 (13)	0.0614 (19)	0.0289 (13)	0.0072 (13)	0.0102 (11)	-0.0007 (12)
C21	0.0323 (14)	0.0541 (17)	0.0315 (14)	0.0021 (12)	0.0138 (12)	0.0055 (12)
C22	0.097 (3)	0.086 (3)	0.147 (5)	-0.016 (3)	0.043 (3)	0.031 (3)
C23	0.048 (2)	0.091 (3)	0.074 (3)	-0.0106 (19)	0.0175 (19)	0.020 (2)
C24	0.065 (3)	0.160 (5)	0.079 (3)	-0.024 (3)	0.036 (2)	0.034 (3)
C25	0.058 (2)	0.191 (6)	0.064 (3)	-0.009 (3)	0.038 (2)	0.007 (3)
C26	0.0425 (18)	0.117 (3)	0.0456 (19)	0.0036 (19)	0.0214 (16)	-0.0049 (19)
C27	0.054 (2)	0.157 (5)	0.058 (2)	0.027 (3)	0.022 (2)	-0.030 (3)
C28	0.065 (3)	0.101 (3)	0.071 (3)	0.026 (2)	0.014 (2)	-0.031 (3)

C29	0.0454 (18)	0.059 (2)	0.0537 (19)	0.0055 (15)	0.0082 (16)	-0.0132 (16)
C30	0.065 (3)	0.054 (2)	0.087 (3)	-0.005 (2)	0.006 (2)	0.001 (2)
C31	0.062 (3)	0.090 (3)	0.090 (3)	-0.015 (2)	0.019 (2)	0.028 (3)
C32	0.0415 (18)	0.096 (3)	0.058 (2)	-0.0078 (18)	0.0194 (16)	0.012 (2)
C33	0.065 (3)	0.177 (5)	0.083 (3)	-0.007 (3)	0.048 (2)	0.020 (3)
C34	0.0336 (15)	0.0576 (18)	0.0386 (15)	0.0002 (13)	0.0105 (13)	-0.0070 (13)
C35	0.0313 (14)	0.076 (2)	0.0391 (15)	0.0004 (15)	0.0128 (12)	-0.0060 (15)
C36	0.0386 (14)	0.0427 (16)	0.0359 (14)	-0.0011 (12)	0.0203 (12)	0.0009 (12)
C37	0.0381 (14)	0.0429 (15)	0.0357 (14)	0.0037 (12)	0.0203 (12)	0.0017 (12)
C38	0.0492 (17)	0.0523 (18)	0.0458 (17)	0.0066 (14)	0.0208 (15)	-0.0102 (14)
C39	0.0502 (18)	0.063 (2)	0.060 (2)	0.0179 (16)	0.0267 (16)	-0.0034 (17)
C40	0.0373 (16)	0.074 (2)	0.0525 (19)	0.0135 (15)	0.0164 (14)	-0.0033 (16)
C41	0.0411 (16)	0.067 (2)	0.0488 (17)	0.0041 (15)	0.0152 (14)	-0.0138 (16)
C42	0.0391 (15)	0.0549 (18)	0.0475 (16)	0.0095 (13)	0.0192 (13)	-0.0084 (14)

Geometric parameters (Å, °)

Pb1—N1	2.493 (2)	С13—Н13	0.9300
Pb1—N2	2.477 (2)	C14—C15	1.428 (5)
Pb1—O1	2.639 (2)	C14—H14	0.9300
Pb1—O2	2.637 (2)	C15—C20	1.405 (4)
Pb1—O4	2.569 (2)	C15—C16	1.406 (6)
Pb1—O5	2.6296 (19)	C16—C17	1.349 (6)
O1—C1	1.254 (4)	C16—H16	0.9300
O2—C1	1.253 (4)	C17—C18	1.406 (6)
O3—C6	1.359 (4)	С17—Н17	0.9300
O3—H3	0.8200	C18—C19	1.500 (5)
O4—C36	1.265 (3)	С19—Н19А	0.9600
O5—C36	1.254 (3)	С19—Н19В	0.9600
O6—C41	1.371 (4)	C19—H19C	0.9600
Об—Нб	0.8200	C20—C21	1.437 (4)
O7—H1W	0.8331	C22—C23	1.501 (6)
O7—H2W	0.8357	C22—H22A	0.9600
O8—H3W	0.8493	C22—H22B	0.9600
O8—H4W	0.8274	C22—H22C	0.9600
O9—H5W	0.8310	C23—C24	1.409 (6)
O9—H6W	0.8336	C24—C25	1.351 (7)
N1-C18	1.334 (4)	C24—H24	0.9300
N1—C20	1.365 (4)	C25—C26	1.385 (7)
N2—C9	1.333 (3)	C25—H25	0.9300
N2—C21	1.375 (3)	C26—C35	1.416 (5)
N3—C23	1.331 (4)	C26—C27	1.430 (6)
N3—C35	1.357 (4)	C27—C28	1.329 (6)
N4—C32	1.325 (4)	C27—H27	0.9300
N4—C34	1.359 (4)	C28—C29	1.414 (6)
C1—C2	1.508 (4)	C28—H28	0.9300
C2—C7	1.386 (4)	C29—C30	1.401 (6)
C2—C3	1.393 (4)	C29—C34	1.411 (4)
C3—C4	1.396 (4)	C30—C31	1.344 (6)

С3—НЗА	0.9300	С30—Н30	0.9300
C4—C5	1.375 (5)	C31—C32	1.400 (6)
C4—H4	0.9300	C31—H31	0.9300
C5—C6	1.383 (5)	C32—C33	1.505 (5)
С5—Н5	0.9300	С33—Н33А	0.9600
C6—C7	1.396 (4)	С33—Н33В	0.9600
С7—Н7	0.9300	С33—Н33С	0.9600
C8—C9	1.499 (4)	C34—C35	1.438 (4)
C8—H8A	0.9600	C36—C37	1.496 (3)
C8—H8B	0.9600	C37—C42	1.387 (4)
C8—H8C	0.9600	C37—C38	1.390 (4)
C9—C10	1.406 (4)	C38—C39	1.384 (4)
C10—C11	1.342 (5)	C38—H38	0.9300
C10—H10	0.9300	C39—C40	1.369 (4)
C11—C12	1.410 (5)	С39—Н39	0.9300
C11—H11	0.9300	C40—C41	1.379 (4)
C12—C21	1.410 (4)	C40—H40	0.9300
C12—C13	1.431 (5)	C41—C42	1.393 (4)
C13—C14	1.346 (5)	C42—H42	0.9300
N2—Pb1—N1	67.50 (7)	C18—C17—H17	119.9
N2—Pb1—O4	83.47 (7)	N1—C18—C17	120.2 (4)
N1—Pb1—O4	123.42 (7)	N1—C18—C19	117.6 (3)
N2—Pb1—O5	88.14 (7)	C17—C18—C19	122.2 (3)
N1—Pb1—O5	80.54 (6)	С18—С19—Н19А	109.5
O4—Pb1—O5	49.89 (6)	C18—C19—H19B	109.5
N2—Pb1—O2	87.06 (7)	H19A—C19—H19B	109.5
N1—Pb1—O2	120.61 (7)	С18—С19—Н19С	109.5
O4—Pb1—O2	104.22 (7)	H19A—C19—H19C	109.5
O5—Pb1—O2	154.07 (7)	H19B—C19—H19C	109.5
N2—Pb1—O1	98.49 (7)	N1-C20-C15	121.8 (3)
N1—Pb1—O1	81.39 (7)	N1—C20—C21	118.9 (2)
O4—Pb1—O1	152.86 (7)	C15—C20—C21	119.3 (3)
O5—Pb1—O1	156.62 (7)	N2—C21—C12	121.7 (3)
O2—Pb1—O1	49.22 (7)	N2-C21-C20	118.9 (2)
C1—O1—Pb1	94.05 (18)	C12—C21—C20	119.5 (3)
C1—O2—Pb1	94.19 (19)	C23—C22—H22A	109.5
С6—О3—Н3	109.5	С23—С22—Н22В	109.5
C36—O4—Pb1	93.58 (16)	H22A—C22—H22B	109.5
C36—O5—Pb1	91.03 (15)	С23—С22—Н22С	109.5
С41—О6—Н6	109.5	H22A—C22—H22C	109.5
H1W—O7—H2W	110.4	H22B—C22—H22C	109.5
H3W—O8—H4W	103.4	N3—C23—C24	121.2 (4)
H5W—O9—H6W	110.8	N3—C23—C22	117.0 (4)
C18—N1—C20	120.3 (3)	C24—C23—C22	121.7 (4)
C18—N1—Pb1	122.8 (2)	C25—C24—C23	120.3 (4)
C20—N1—Pb1	116.50 (17)	C25—C24—H24	119.8
C9—N2—C21	119.1 (2)	C23—C24—H24	119.8
C9—N2—Pb1	123.75 (18)	C24—C25—C26	120.2 (4)
C21—N2—Pb1	116.78 (17)	C24—C25—H25	119.9

C23—N3—C35	118.5 (3)	C26—C25—H25	119.9
C32—N4—C34	118.6 (3)	C25—C26—C35	117.0 (4)
O2—C1—O1	122.5 (3)	C25—C26—C27	123.9 (4)
O2—C1—C2	118.8 (3)	C35—C26—C27	119.1 (4)
O1—C1—C2	118.8 (3)	C28—C27—C26	121.4 (4)
C7—C2—C3	120.7 (3)	С28—С27—Н27	119.3
C7—C2—C1	118.9 (3)	С26—С27—Н27	119.3
C3—C2—C1	120.4 (3)	C27—C28—C29	121.6 (4)
C2—C3—C4	118.8 (3)	C27—C28—H28	119.2
С2—С3—НЗА	120.6	C29—C28—H28	119.2
С4—С3—НЗА	120.6	C30—C29—C34	116.9 (4)
C5—C4—C3	120.5 (4)	C30—C29—C28	123.6 (4)
С5—С4—Н4	119.8	C34—C29—C28	119.5 (4)
C3—C4—H4	119.8	C31—C30—C29	120.4 (4)
C4—C5—C6	120.7 (3)	С31—С30—Н30	119.8
С4—С5—Н5	119.6	С29—С30—Н30	119.8
С6—С5—Н5	119.6	C30—C31—C32	119.6 (4)
O3—C6—C5	118.5 (3)	С30—С31—Н31	120.2
O3—C6—C7	122.1 (4)	C32—C31—H31	120.2
C5—C6—C7	119.5 (4)	N4—C32—C31	122.3 (4)
C2—C7—C6	119.8 (3)	N4—C32—C33	117.3 (4)
С2—С7—Н7	120.1	C31—C32—C33	120.4 (4)
С6—С7—Н7	120.1	С32—С33—Н33А	109.5
С9—С8—Н8А	109.5	С32—С33—Н33В	109.5
С9—С8—Н8В	109.5	H33A—C33—H33B	109.5
H8A—C8—H8B	109.5	С32—С33—Н33С	109.5
С9—С8—Н8С	109.5	H33A—C33—H33C	109.5
H8A—C8—H8C	109.5	H33B—C33—H33C	109.5
H8B—C8—H8C	109.5	N4—C34—C29	122.2 (3)
N2—C9—C10	121.0 (3)	N4—C34—C35	118.4 (3)
N2—C9—C8	119.8 (3)	C29—C34—C35	119.4 (3)
C10—C9—C8	119.2 (3)	N3—C35—C26	122.8 (3)
C11—C10—C9	121.1 (3)	N3—C35—C34	118.3 (3)
C11—C10—H10	119.5	C26—C35—C34	119.0 (3)
C9—C10—H10	119.5	O5—C36—O4	121.1 (2)
C10-C11-C12	119.6 (3)	O5—C36—C37	120.3 (2)
C10—C11—H11	120.2	O4—C36—C37	118.6 (2)
C12—C11—H11	120.2	C42—C37—C38	119.4 (2)
C11—C12—C21	117.5 (3)	C42—C37—C36	120.3 (2)
C11—C12—C13	123.1 (3)	C38—C37—C36	120.2 (2)
C21—C12—C13	119.3 (3)	C39—C38—C37	120.0 (3)
C14—C13—C12	121.2 (4)	С39—С38—Н38	120.0
C14—C13—H13	119.4	C37—C38—H38	120.0
C12—C13—H13	119.4	C40—C39—C38	120.4 (3)
C13—C14—C15	120.8 (3)	C40—C39—H39	119.8
C13—C14—H14	119.6	C38—C39—H39	119.8
C15—C14—H14	119.6	C39—C40—C41	120.4 (3)
C20—C15—C16	116.7 (4)	C39—C40—H40	119.8
C20—C15—C14	119.9 (3)	C41—C40—H40	119.8

C16 C15 C14	122 4 (4)	06 C41 C40	117.7(2)
C10-C15-C14	123.4(4) 120.8(4)	06 C41 C42	117.7(3) 122.5(3)
	110.6	$C_{10} = C_{11} = C_{12}$	122.3(3)
$C_{1} = C_{10} = H_{10}$	119.0	$C_{40} - C_{41} - C_{42}$	119.0(3)
$C_{15} - C_{10} - H_{10}$	119.0	$C_{37} = C_{42} = C_{41}$	120.0 (3)
C10 - C17 - C18	120.3 (4)	$C_{3}/-C_{42}$ -H42	120.0
C10-C1/-H1/	119.9	C41—C42—H42	120.0
N2—Pb1—O1—C1	80.06 (19)	C20—N1—C18—C19	178.1 (3)
N1—Pb1—O1—C1	145.6 (2)	Pb1—N1—C18—C19	-9.5 (4)
O4—Pb1—O1—C1	-12.2 (3)	C16—C17—C18—N1	1.1 (5)
O5—Pb1—O1—C1	-174.70 (17)	C16—C17—C18—C19	-179.2 (4)
O2—Pb1—O1—C1	1.44 (17)	C18—N1—C20—C15	1.9 (4)
N2—Pb1—O2—C1	-105.30 (19)	Pb1—N1—C20—C15	-170.99 (19)
N1—Pb1—O2—C1	-43.7 (2)	C18—N1—C20—C21	-177.4 (2)
O4—Pb1—O2—C1	172.20 (18)	Pb1—N1—C20—C21	9.7 (3)
O5—Pb1—O2—C1	175.06 (17)	C16-C15-C20-N1	-0.4 (4)
O1—Pb1—O2—C1	-1.44 (17)	C14—C15—C20—N1	-179.8 (3)
N2—Pb1—O4—C36	104.53 (17)	C16-C15-C20-C21	178.9 (3)
N1—Pb1—O4—C36	47.02 (18)	C14—C15—C20—C21	-0.6 (4)
O5—Pb1—O4—C36	11.45 (15)	C9—N2—C21—C12	-1.2 (4)
O2—Pb1—O4—C36	-170.18 (16)	Pb1—N2—C21—C12	172.30 (19)
O1—Pb1—O4—C36	-159.58 (17)	C9—N2—C21—C20	177.7 (2)
N2—Pb1—O5—C36	-94.55 (17)	Pb1—N2—C21—C20	-8.8 (3)
N1—Pb1—O5—C36	-162.04 (17)	C11—C12—C21—N2	0.7 (4)
O4—Pb1—O5—C36	-11.52 (15)	C13—C12—C21—N2	-179.4 (3)
O2—Pb1—O5—C36	-15.1 (3)	C11—C12—C21—C20	-178.2(2)
01 - Pb1 - 05 - C36	158 15 (18)	C_{13} C_{12} C_{21} C_{20}	17(4)
N_{2} Pb1 N_{1} C18	177 4 (2)	N1 - C20 - C21 - N2	-0.7(3)
Ω_4 —Pb1—N1—C18	-1175(2)	$C_{15} = C_{20} = C_{21} = N_2$	-180.0(2)
05—Pb1—N1—C18	-90.7(2)	N1 - C20 - C21 - C12	178.2(2)
Ω^2 _Pb1_N1_C18	105.4(2)	C_{15} C_{20} C_{21} C_{12} C_{12}	-1.1(4)
01 Pb1 N1 C18	74 A (2)	$C_{13} = C_{20} = C_{21} = C_{12}$	0.6(5)
$N_2 = P_1 N_1 = C_{10}$	-9.94(16)	$C_{35} = N_3 = C_{25} = C_{24}$	-177.3(3)
04 Bb1 N1 C20	55 17 (10)	$C_{33} = 103 = C_{23} = C_{22}$	-0.7(6)
O_4 $F_0 I = NI = C_{20}$	SS.17 (19) 81.08 (17)	13 - 223 - 224 - 225	-0.7(0)
O_{2} Pb1 N1 C20	81.98 (17) 81.01 (18)	$C_{22} = C_{23} = C_{24} = C_{23}$	1//.1(4)
$O_2 - PO_1 - N_1 - C_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	-81.91 (18)	$C_{23} - C_{24} - C_{23} - C_{26}$	-0.1(/)
OI - POI - NI - C20	-112.91 (18)	$C_{24} = C_{25} = C_{26} = C_{35}$	1.0 (6)
NI - PbI - N2 - C9	-1/.3(2)	$C_{24} = C_{25} = C_{26} = C_{27}$	-1/8./(4)
04—Pb1—N2—C9	52.4 (2)	C25—C26—C27—C28	179.1 (4)
O5—Pb1—N2—C9	102.2 (2)	C35—C26—C27—C28	-0.6 (6)
O2—Pb1—N2—C9	-52.3 (2)	C26—C27—C28—C29	1.1 (6)
O1—Pb1—N2—C9	-100.3 (2)	C27—C28—C29—C30	-179.9 (4)
N1—Pb1—N2—C21	9.58 (16)	C27—C28—C29—C34	-0.7 (5)
O4—Pb1—N2—C21	-120.78 (17)	C34—C29—C30—C31	-0.2 (5)
O5—Pb1—N2—C21	-70.95 (17)	C28—C29—C30—C31	179.0 (4)
O2—Pb1—N2—C21	134.55 (17)	C29—C30—C31—C32	0.8 (6)
O1—Pb1—N2—C21	86.53 (17)	C34—N4—C32—C31	-0.1 (5)
Pb1—O2—C1—O1	2.7 (3)	C34—N4—C32—C33	-178.2 (3)
Pb1—O2—C1—C2	-177.5 (2)	C30-C31-C32-N4	-0.6 (6)
Pb1—O1—C1—O2	-2.7 (3)	C30—C31—C32—C33	177.4 (4)

Pb1	177.5 (2)	C32—N4—C34—C29	0.8 (4)
O2—C1—C2—C7	-19.0 (4)	C32—N4—C34—C35	-178.9 (3)
O1—C1—C2—C7	160.8 (3)	C30—C29—C34—N4	-0.6 (4)
O2—C1—C2—C3	163.1 (3)	C28—C29—C34—N4	-179.9 (3)
O1—C1—C2—C3	-17.1 (4)	C30—C29—C34—C35	179.0 (3)
C7—C2—C3—C4	1.8 (5)	C28—C29—C34—C35	-0.3 (4)
C1—C2—C3—C4	179.7 (3)	C23—N3—C35—C26	0.3 (4)
C2—C3—C4—C5	-1.5 (5)	C23—N3—C35—C34	179.2 (3)
C3—C4—C5—C6	-1.1 (5)	C25—C26—C35—N3	-1.2 (5)
C4—C5—C6—O3	-176.1 (3)	C27—C26—C35—N3	178.6 (3)
C4—C5—C6—C7	3.3 (5)	C25—C26—C35—C34	-180.0 (3)
C3—C2—C7—C6	0.4 (5)	C27—C26—C35—C34	-0.3 (4)
C1—C2—C7—C6	-177.6 (3)	N4—C34—C35—N3	1.4 (4)
O3—C6—C7—C2	176.4 (3)	C29—C34—C35—N3	-178.2 (3)
C5—C6—C7—C2	-2.9 (5)	N4-C34-C35-C26	-179.7 (3)
C21—N2—C9—C10	0.6 (4)	C29—C34—C35—C26	0.7 (4)
Pb1—N2—C9—C10	-172.4 (2)	Pb1	21.3 (3)
C21—N2—C9—C8	-179.7 (3)	Pb1	-157.8 (2)
Pb1—N2—C9—C8	7.3 (4)	Pb1	-21.8 (3)
N2-C9-C10-C11	0.5 (5)	Pb1	157.3 (2)
C8—C9—C10—C11	-179.2 (3)	O5—C36—C37—C42	5.5 (4)
C9—C10—C11—C12	-0.9 (5)	O4—C36—C37—C42	-173.6 (3)
C10-C11-C12-C21	0.3 (4)	O5—C36—C37—C38	-175.4 (3)
C10-C11-C12-C13	-179.5 (3)	O4—C36—C37—C38	5.5 (4)
C11-C12-C13-C14	179.1 (3)	C42—C37—C38—C39	1.3 (5)
C21-C12-C13-C14	-0.7 (5)	C36—C37—C38—C39	-177.8 (3)
C12-C13-C14-C15	-0.9 (5)	C37—C38—C39—C40	-0.6 (5)
C13-C14-C15-C20	1.6 (5)	C38—C39—C40—C41	-0.2 (5)
C13-C14-C15-C16	-177.8 (3)	C39—C40—C41—O6	-178.4 (3)
C20-C15-C16-C17	-0.7 (5)	C39—C40—C41—C42	0.2 (5)
C14-C15-C16-C17	178.7 (3)	C38—C37—C42—C41	-1.2 (4)
C15-C16-C17-C18	0.4 (6)	C36—C37—C42—C41	177.9 (3)
C20—N1—C18—C17	-2.2 (4)	O6—C41—C42—C37	179.0 (3)
Pb1—N1—C18—C17	170.2 (2)	C40—C41—C42—C37	0.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A		
O3—H3···O8 ⁱ	0.82	1.86	2.669 (4)	169		
O6—H6…N4	0.82	2.15	2.916 (4)	155		
O7—H1W…O1	0.83	1.88	2.702 (3)	172		
O7—H2W···O6 ⁱⁱ	0.84	2.15	2.977 (3)	169		
O8—H3W···O4 ⁱⁱⁱ	0.85	1.94	2.784 (3)	180		
O8—H4W···O9 ^{iv}	0.83	2.02	2.828 (4)	166		
$O9$ — $H6W$ ··· $O2^v$	0.83	2.15	2.850 (4)	141		
O9—H5W···O8 ^{iv}	0.83	2.19	2.828 (4)	133		
O6—H6…N3	0.82	2.51	3.124 (4)	133		
Symmetry codes: (i) $x, y+1, z$; (ii) $x+1/2, -y+3/2, z+1/2$; (iii) $-x+1/2, -y+3/2, -z+1$; (iv) $-x+1/2, -y+1/2, -z+1$; (v) $x, y-1, z$.						

Fig. 1

Fig. 4